AZATHIOPRINE-IMMUNOSUPPRESSIVE DRUG FOR MYASTHENIA GRAVIS NEUROLOGY DEPARTMENT

CONTENT

- Generalle Information
- Treatment-Immunosuppressants:
 - Azathioprine
- Conclusion

I. General Information

Myasthenia gravis (MG) is an autoimmune disorder characterized by fluctuating muscle weakness and fatigability on exertion, in which autoantibodies to proteins of the neuromuscular junction (NMJ) are pathogenically relevant

Normal neuromuscular junction

Neuromuscular junction in myasthenia gravis

Distribution of weakness

- Ocular 17%
- Ocular and bulbar 13%
 - Mild 2%
 - Moderate/severe 11%
- Ocular and limb 20%
- Generalised 50%
 - Mild 2%
 - Moderate 14%
 - Severe 15%
 - Assisted ventilation 11%
 - Died despite ventilation 8%

Pract Neurol 2015;15:199-206 doi:10.1136/practneurol-2015-001126

Clinical guidelines

Myasthenia gravis: Association of British Neurologists' management guidelines

Jon Sussman¹, Maria E Farrugia², Paul Maddison³, Marguerite Hill⁴, M Isabel Leite⁵, David Hilton-Jones⁵

- 1 Start pyridostigmine following protocol.
- 2. ACh-R antibody seropositive and aged under 45 years: consider thymectomy.
- 3. If symptomatic despite pyridostigmine, start prednisolone (generally given on alternate days.
- 4. If relapse occurs on prednisolone withdrawal at a dose of 7.5–10 mg/day (or 15–20 mg alternate days) or greater introduce immunosuppression.
 Immunosuppression may also be used for patients with corticosteroid-related side effects on low-dose prednisolone.

Treatment	Mode of action	Evidence class [*]	Serious adverse events	Recommendation
<i>Symptomatic</i> Pyridostigmine	Inhibits acetylcholinesterase	Class III	Cholinergic crisis	First line
Short-term immuno Prednisolone	suppression Inhibits T-cell activation and impairs function of cells from the monocyte/macrophage lineage	Class II	Cushingoid features, diabetes, hypertension, osteoporosis, psychiatric disorders	First line
Long-term immunos	suppression			
Azathioprine	Purine antagonist that inhibits	Class I	Haematopoietic suppression,	First line
	DNA synthesis and cell proliferation		hepatotoxicity, malignancy, papcreatitis	
Ciclosporin	Calcineurin-mediated inhibition	Class I	Hypertension, malignancy,	To be considered in patients
	of T-cell interleukin-2 production		nephrotoxicity	intolerant of or unresponsive to azathioprine, methotrexate, mycophenolate mofetil or tacrolimus
Cyclophosphamide	DNA-alkylating agent that blocks cell proliferation	Class I	Bladder toxicity, haematopoietic suppression, infertility, malignancy, opportunistic infections	To be considered in patients intolerant of or unresponsive to azathioprine, methotrexate, mycophenolate mofetil, tacrolimus or ciclosporin
Methotrexate	Folate antagonist that inhibits <i>de</i> <i>novo</i> synthesis of purines and pyrimidines	Class II	Haematopoietic suppression, hepatotoxicity, pneumonitis	Second line in patients intolerant of or unresponsive to azathioprine
Mycophenolate mofetil	Inhibits T-cell proliferation by blocking purine synthesis	Class I	Haematopoietic suppression, hepatotoxicity, opportunistic infections, progressive multifocal leukoencephalopathy	Third line in patients intolerant of or unresponsive to azathioprine, methotrexate or tacrolimus
Rituximab	Chimeric monoclonal antibody against the B-cell surface marker CD20	Class IV	Neutropaenia, opportunistic infections, progressive multifocal leukoencephalopathy	To be considered only in patients with severe refractory MG unresponsive to other treatments
Tacrolimus	Calcineurin-mediated inhibition of T-cell interleukin 2 production	Class I	Hyperglycaemia, hypertension, malignancy, nephrotoxicity	Third line in patients intolerant of or unresponsive to azathioprine, methotrexate or mycophenolate mofetil

Treatment	Mode of action	Evidence class [*]	Serious adverse events	Recommendation
Rapid short-term im Immunoglobulin Plasma exchange	munomodulation Interference of signalling via Fc receptors, neutralisation of activated complement, suppression of idiotypic antibodies, modulation of proinflammatory cytokines Removes circulating antibodies, cytokines, immune complexes, and other inflammatory mediators	Class I Class I	Aseptic meningitis, solute-induced renal failure, thrombotic complications, volume overload Air embolism, disturbances in acid- base homeostasis, hypocalcaemia, hypotension, infection, pneumothorax, thrombosis, volume overload	First line First line
Long-term immunor Thymectomy	nodulation Disrupts B-cells producing anti-AChR antibodies	Class II	General risks of surgery	Always indicated in patients with a thymoma; in non-thymomatous anti-AChR antibody-positive patients, to be considered if MG is not controlled adequately with medical treatment

*Evidence Class I - randomised controlled trials available; Class II - controlled trials without randomisation or randomised trials with small patient number; Class III - uncontrolled trials; Class IV - case series

II.AZATHIOPRINE

 Azathioprine, a prodrug of 6mercaptopurine (6-MP), interferes in purine nucleotide synthesis and metabolism which makes it an effective inhibitor of lymphocyte proliferation

Pract Neurol 2015;15:199-206 doi:10.1136/practneurol-2015-001126

Clinical guidelines

Myasthenia gravis: Association of British Neurologists' management guidelines

Jon Sussman¹, Maria E Farrugia², Paul Maddison³, Marguerite Hill⁴, M Isabel Leite⁵, David Hilton-Jones⁵

- Azathioprine is the first-line agent
- Azathioprine is slow to achieve maximum effect

Medscape® ww	ww.medscape.com	
Treatment		Time to Clinical Effect
Pyridostigmine		10–15 minutes
Plasmapheresis		1-14 days
IVIg		1-4 weeks
Prednisone		2–8 weeks
Mycophenolate mofe	ətil	2–6 months
Cyclosporine		2-6 months
Azathioprine		3-18 months
	Source: Semin Neurol	© 2004 Thieme Medical Publishers

Table 1. Table 1. Time to Clinical Effect of Therapies for Myasthenia Gravis

A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis

J. Palace, BM, DM, J. Newsom-Davis, MD, FRS, B. Lecky, MD, FRCP and Myasthenia Gravis Study Group

* SHOW AFFILIATIONS

Address correspondence and reprint requests to Dr. Jackie Palace, Department of Clinical Neurology, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK.

doi: http://dx.doi.org/10.1212/WNL.50.6.1778 Neurology June 1998 vol. 50 no. 6 1778-1783

A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis

J. Palace, BM, DM, J. Newsom-Davis, MD, FRS, B. Lecky, MD, FRCP and Myasthenia Gravis Study Group

* SHOW AFFILIATIONS Address correspondence and reprint requests to Dr. Jackie Palace, Department of Clinical Neurology, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK.

doi: http://dx.doi.org/10.1212/WNL.50.6.1778 Neurology June 1998 vol. 50 no. 6 1778-1783

- The prednisolone dose and clinical outcome were compared in a multicenter randomized double-blind study of 34 MG patients who were followed up for mgkg); the other group received prednisolone on alternate days plus placebo (PRED + PLAC).
- Initial high-dose prednisolone (1.5 mgkg on alternate days) was tapered at remission to the minimal dose required to maintain remission. 3 years.
- One group (PRED + AZA) received prednisolone (on alternate days) plus azathioprine (2.5

- The prednisolone dose did not differ significantly between the two groups at 1 year (median values: PRED + AZA, 37.5 mg on alternate days; PRED + PLAC, 45 mg on alternate days) but was reduced at 2 and 3 years in the PRED + MA group (median value at 3 years: PRED + AZA, 0 mg on alternate days; PRED + PLAC, 40 mg on alternate days; p = 0.02).
- Relapses and failures to remit over the 3 years were more frequent in the PRED + PLAC group. There was a sharp rise in the antiacetylcholine receptor (AChR) titers in the PRED + PLAC group at 2 years. Incidence of side effects was slightly less in the PRED + MA group.
- Azathioprine as an adjunct to alternate day prednisolone in the treatment of antibody-positive generalized MG reduces the maintenance dose of prednisolone and is associated with fewer treatment failures, longer remissions, and fewer side effects.

Long term treatment of myasthenia gravis with azathioprine

V. Fonseca and C.W.H. Havard

Royal Free Hospital, Pond Street, London NW3 2QG, UK.

Summary: Twenty-seven patients with myasthenia gravis have been treated with azathioprine in conjunction with pyridostigmine and prednisolone for a total of 138 patient years. Side effects necessitated discontinuation of treatment in only four patients. Treatment with azathioprine was associated with marked clinical improvement in all the remaining 23 patients, resulting in reduction in the dose of pyridostigmine and prednisolone. The number of hospital admissions as well as the number of episodes of respiratory failure were markedly reduced.

		Pre-azathioprine	Post-azathioprine (current status)
Clinical grade	la	0	4
	16	0	11
	2	0	8
	3	10	0
	4	13	0
Hospital admission in last year		40	1
Median (range)	dose of		
pyridostigmine		600	240
mg/day		(180 - 1200)	(0-900)
Median (range)	dose of		(* ****)
prednisolone		15	5
mg/day		(0-20)	(0 - 20)

Table II Effect of azathioprine in 23 patients with myasthenia gravis

Original investigations

Springer-Verlag 1988

J Neurol (1988) 235:449-453

Azathioprine as a single drug or in combination with steroids in the treatment of myasthenia gravis

R. Mantegazza¹, C. Antozzi¹, D. Peluchetti², A. Sghirlanzoni², and F. Cornelio¹

Departments of ¹Neuromuscular Diseases and ²Neurology, Istituto Neurologico "C. Besta", Via Celoria 11, I-20133 Milan, Italy

Azathioprine (Aza) has been used alone or in combination with steroids for two groups of myasthenic patients. Positive responses were noted in **75% of patients** on Aza alone and in 70% receiving the combined regimen. The clinical course of the two groups differed in terms of respiratory crisis and need for plasma exchange. With an appropriate Aza administration schedule side-effects were not a limiting factor to its use. **Aza treatment induced a reduction in anti-AchR-antibody level** that was correlated with clinical improvement and greatly decreased the need for steroids.

Toxicities of Immunosuppressive Medications-Azathioprine

- Nausea and vomiting in about 22% of patients
- Pancreatitis and hepatotoxicity have also been reported and these symptoms occur within the first 3-6 months
- Leucopenia and thrombocytopenia
- Malignancies are known to occur in azathioprine treated patients but the exact incidence is unknown: lymphoma, squamous cell carcinomas of the skin, Kaposi's sarcoma, in situ carcinomas of the cervix, carcinomas of the vulva and perineum, hepatobiliary carcinoma, and mesenchymal tumors

Conclusion

- Azathioprine still remains the first choice for longterm immunosuppressive therapy. However, it is important to point out that there are only very limited data from controlled studies on the efficacy of azathioprine.
- A significant disadvantage of azathioprine is the delayed onset of action. Commonly, azathioprine is therefore started combined with prednisolone to achieve a rapid therapeutic effect.

REFERENCE

- Myasthenia gravis: Association of British Neurologists' management Guidelines-Jon Sussman, Maria E Farrugia, Paul Maddison, Marguerite Hill, M Isabel Leite, David Hilton-Jones
- Autoimmune myasthenia gravis: emerging clinical and biological Heterogeneity-Matthew N Meriggioli, MD 1 and Donald B Sanders, MD
- Diagnosis and management of myasthenia gravis-Sivakumar Sathasivam MRCP (UK), LLM, PhD- Progress in Neurology and Psychiatry January/February 2014
- Toxicities of Immunosuppressive Treatment of Autoimmune
 Neurologic Diseases- Enrico C. Lallana and Camilo E. Fadul *

